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A new anisotropic mesh adaptation strategy for finite element solution of elliptic differen-
tial equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones
in some metric space, with the metric tensor being computed based on hierarchical a pos-
teriori error estimates. A global hierarchical error estimate is employed in this study to
obtain reliable directional information of the solution. Instead of solving the global error
problem exactly, which is costly in general, we solve it iteratively using the symmetric
Gauß–Seidel method. Numerical results show that a few GS iterations are sufficient for
obtaining a reasonably good approximation to the error for use in anisotropic mesh adap-
tation. The new method is compared with several strategies using local error estimators or
recovered Hessians. Numerical results are presented for a selection of test examples and a
mathematical model for heat conduction in a thermal battery with large orthotropic jumps
in the material coefficients.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Anisotropic mesh adaptation has proved to be a useful tool in numerical solution of partial differential equations (PDEs).
This is especially true when problems arising from science and engineering have distinct anisotropic features. The ability to
adapt the size, shape, and orientation of mesh elements according to certain quantities of interest can significantly improve
the accuracy of the solution and enhance the computational efficiency.

Criteria for an optimal anisotropic triangular mesh were already given by D’Azevedo [1] and Simpson [2] in the early
nineties of the last century. A number of algorithms for automatic construction of such meshes have since been developed.

A common approach for generating an anisotropic mesh is based on generation of a quasi-uniform mesh in some metric
space. A key component of the approach is the determination of an appropriate metric often based on some type of error
estimates. Unfortunately, classic isotropic error estimates do not suit this purpose well because they generally do not take
the directional effect of the error or solution derivatives into consideration. This explains the recent interest in anisotropic
error estimation; for example, see anisotropic interpolation error estimates by Formaggia and Perotto [3], Huang [4], and
Huang and Sun [5]. Such error estimates for numerical solution of PDEs can be found, among others, in works by Apel
[6], Kunert [7], Formaggia and Perotto [8], and Picasso [9].
. All rights reserved.
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It is worth pointing out that most existing anisotropic error estimates are a priori, requiring information of the exact solu-
tion of either the underlying problem or its adjoint, which is typically unavailable in a numerical simulation. A widely-used
approach of avoiding this difficulty in practical computation is to replace the information by one recovered from the ob-
tained numerical approximation. A number of recovery techniques can be used for this purpose, such as the gradient recov-
ery technique by Zienkiewicz and Zhu [10,11] and the technique based on the variational formulation by Dolejší [12]. Zhang
and Naga [13] have recently proposed a new algorithm to reconstruct the gradient (which can also be used to reconstruct the
Hessian) by fitting a quadratic polynomial to the nodal function values and subsequently differentiating it. It has been shown
by Zhang and Naga [13] and by Vallet et al. [14] that the latter is robust and works best among several recovery techniques.
Generally speaking, recovery methods work well when exact nodal function values are used but may lose some accuracy
when applied to finite element approximations on non-uniform meshes. Nevertheless, the optimality of mesh adaptation
based on those recovered approximations can still be proven under suitable conditions, see Vassilevski and Lipnikov [15].
More recently, conditions for asymptotically exact gradient and convergent Hessian recovery from a hierarchical basis error
estimator have been given by Ovall [16]. His result is based on superconvergence results by Bank and Xu [17,18], which re-
quire that the mesh be uniform or almost uniform.

The objective of this paper is to study the use of a posteriori error estimates in anisotropic mesh adaptation. Although a
posteriori error estimates are frequently used for mesh adaptation, especially for refinement strategies and recently also for
construction of equidistributing meshes for numerical solution of two-point boundary value problems by He and Huang [19]
as well as in connection with the moving finite element method by Lang et al. [20], up to now only few methods for their use
in anisotropic mesh adaptation have been published. For example, Cao et al. [21] studied two a posteriori error estimation
strategies for computing scalar monitor functions for use in adaptive mesh movement; Apel et al. [22] investigated a number
of a posteriori strategies for computing error gradients used for directional refinement; and Agouzal et al. [23] proposed a
new method for computing tensor metrics provided that an edge-based a posteriori error estimate is given. Moreover,
Dobrowolski et al. [24] have pointed out that error estimation based on solving local error problems can be inaccurate on
anisotropic meshes. This shortcoming of local error estimates can be explained by the fact that they generally do not contain
enough directional information of the solution, which is global in nature, and that their accuracy and effectiveness are sen-
sitive to the aspect ratio of elements, which can be large for anisotropic meshes. We thus choose to develop our approach
based on error estimation by means of globally defined error problem. To enhance the computational efficiency, we employ
an iterative method to obtain a cost-efficient approximation to the solution of the corresponding global linear system.
Numerical results show that a few symmetric Gauß–Seidel iterations are sufficient for this purpose. This is not surprising
since the approximation is used only in mesh generation and it is often unnecessary to compute the mesh to a very high
accuracy as for the solution of the underlying differential equation. Numerical experiments also show that the new approach
is comparable in accuracy and efficiency to methods using Hessian recovery. We also test it with a more challenging exam-
ple: a heat conduction problem for a thermal battery with large and orthotropic jumps in the material coefficients.1

The outline of the paper is as follows. In Section 2, the new framework of using a posteriori hierarchical error estimates for
anisotropic mesh adaptation in finite element approximation is described. In Section 3, the optimal metric tensor based on
the interpolation error is developed. Several implementation issues are addressed in Section 4. Numerical results obtained
with the new approach and with Hessian recovery-based methods are presented in Section 5 for a selection of test examples.
Numerical results for the heat conduction problem are given in Section 6. Finally, Section 7 contains conclusions and
comments.

2. Model problem and adaptive finite element approximation

In this section, we describe a new framework of using a posteriori hierarchical error estimates for anisotropic mesh adap-
tation in finite element approximation.

2.1. Model problem and finite element approximation

Consider the boundary value problem of a second-order elliptic differential equation. Assume that the corresponding var-
iational problem is given by
1 A S
ðPÞ
Find u 2 V such that
aðu; vÞ ¼ FðvÞ 8v 2 V ;

�

where V is an appropriate Hilbert space of functions over a domain X 2 R2; að�; �Þ is a bilinear form defined on V � V , and Fð�Þ
is a continuous linear functional on V. The finite element approximation uh of u is the solution of the corresponding varia-
tional problem on a finite dimensional subspace Vh � V , i.e.,
ðPhÞ
Find uh 2 Vh such that
aðuh; vhÞ ¼ FðvhÞ 8vh 2 Vh:

�

andia National Laboratories benchmark problem.
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If the bilinear form að�; �Þ is coercive and continuous on V, both variational problems (P) and ðPhÞ have unique solutions. The
finite dimensional subspace Vh is often chosen as a space of piecewise polynomials associated with a given mesh, say T h, on
X. The variational problem ðPhÞ results in a system of dimðVhÞ linear algebraic equations.

2.2. Adaptive linear finite element solution

In this work we consider a linear finite element method, where V is taken as H1ðXÞ and Vh is the space of continuous,
piecewise linear functions over T h.

Let T ðiÞh ði ¼ 0;1; . . .Þ be an affine family of simplicial meshes on X and V ðiÞh the corresponding space of continuous, piece-
wise linear functions. The adaptive solution is the result of an iterative process described as follows.

We start with an initial mesh T ð0Þh . On every mesh T ðiÞh we solve the variational problem ðPhÞwith V ðiÞh and use the obtained
approximation uðiÞh to compute a new adaptive mesh for the next iteration step. The new mesh T ðiþ1Þ

h is generated as an almost
uniform mesh in a metric space with a metric tensor MðiÞ

h defined in terms of uðiÞh . This yields the sequence
-

Fig. 1.
adaptiv
T ð0Þh ;V ð0Þh

� �
! uð0Þh ! Mð0Þ

h ! T ð1Þh ;V ð1Þh

� �
! uð1Þh ! Mð1Þ

h ! � � � :
The process is repeated until a good adaptation is achieved. An example of such adaptive meshes is shown in Fig. 1.
Typically, the metric tensor Mh depends on the Hessian of the exact solution of the underlying problem [3,25], which is

often unavailable in practical computation. The common approach to avoid this difficulty is to recover an approximate Hes-
sian from the computed solution. We consider here an alternative approach, which uses an a posteriori error estimator for
defining and computing Mh.

2.3. Mesh adaptation based on a posteriori error estimates

Let Rh be a reconstruction operator applied to the numerical approximation uh. It can be either a recovery process, a
smoothing operator, or an operator connected to an a posteriori error estimate. We assume that the reconstruction Rhuh

is better than uh in the sense that
kRhuh � uk 6 bkuh � uk ð1Þ
for a given norm k � k, where 0 6 b < 1 is a constant.
From the triangle inequality we immediately have
ku� uhk 6
1

1� b
kRhuh � uhk: ð2Þ
2.5
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An example of anisotropic mesh adaptation for the test function uðx; yÞ ¼ tanhð60xÞ � tanhð60ðx� yÞ � 30Þ: surface plot (a) of the function on an
e mesh (b) obtained with the use of the exact Hessian.
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If the reconstruction Rh has the property
IhRhvh ¼ vh 8vh 2 Vh ð3Þ
for some interpolation operator Ih, we can bound the finite element approximation error by the (explicitly computable) inter-
polation error of the reconstructed function Rhuh, viz.,
ku� uhk 6
1

1� b
kRhuh � uhk ¼

1
1� b

kRhuh � IhRhuhk: ð4Þ
Moreover, from the interpolation theory we know that the interpolation error for a given function v can be bounded by a
term depending on the triangulation T h and derivatives of v, i.e.,
kv � Ihvk 6 C � EðT h; vÞ; ð5Þ
where C is a constant independent of T h and v. Therefore, we can rewrite (4) as
ku� uhk 6
C

1� b
EðT h;RhuhÞ: ð6Þ
In other words, up to a constant, the solution error is bounded by the interpolation error of Rhuh.

2.4. Hierarchical basis

One possibility to achieve the property (3) is to use the hierarchical decomposition of the finite element space. Let
Vh ¼ Vh �Wh;
where Wh is a hierarchical extension of Vh to Vh. Each �vh 2 Vh has a unique representation �vh ¼ vh þwh with vh 2 Vh and
wh 2Wh. If an interpolation operator, Ih : Vh # Vh, can be defined such that
Ihwh ¼ 0 8wh 2Wh ð7Þ
and if we define Rh through
Rhuh ¼ uh þ zh ð8Þ
for some zh 2Wh, then we shall have the property (3) and the estimate (6). Moreover,
kRhuh � IhRhuhk ¼ kuh þ zh � uhk ¼ kzhk ¼ kzh � Ihzhk:
Consequently, we can estimate the finite element approximation error by evaluating the interpolation error of zh, i.e.,
ku� uhk 6
1

1� b
kzh � Ihzhk 6

C
1� b

EðT h; zhÞ: ð9Þ
In the context of a posteriori error estimates, zh is typically taken as a hierarchical basis error estimator.

2.5. A posteriori error estimate based on hierarchical basis

The computation of the error estimator is based on a general framework, details on which can be found among others in
the work of Bank and Smith [26] or Deuflhard et al. [27]. The approach is briefly explained as follows.

Let uh 2 Vh be a linear finite element solution of the variational problem ðPhÞ and let Vh ¼ Vh �Wh, where Wh is the linear
span of the edge bubble functions. Obviously, Vh is a subspace of piecewise quadratic functions. Moreover, we can define Ih as
the vertex-based, piecewise linear Lagrange interpolation. This interpolation satisfies (7) since the edge bubble functions
vanish at vertices.

Let eh ¼ u� uh be the error of the finite element solution uh. Then for all v 2 V we have
aðeh; vÞ ¼ FðvÞ � aðuh;vÞ: ð10Þ
The error estimate zh is then defined as the solution of the approximate error problem
ðEhÞ
Find zh 2Wh such that
aðzh;whÞ ¼ FðwhÞ � aðuh;whÞ 8wh 2Wh:

�

The estimate zh can be viewed as a projection of the true error onto the subspace Wh. Note that this definition of the error
estimate is global and its solution can be costly. Several solution methods will be discussed in Section 4.

Once zh is determined, the reconstruction Rhuh is derived from (8). Then, if assumption (1) holds, the finite element approx-
imation error can be controlled by minimizing the interpolation error of zh, i.e., the right-hand side in (9). In this paper, we
construct optimal metric tensors with respect to interpolation error estimates EðT h; zhÞ for the L2 norm. We assume that
the reconstruction Rhuh ¼ uh þ zh, where zh is computed from ðEhÞ, gives a better approximation to u than uh, i.e., b < 1 in (1).
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3. Metric tensor based on linear interpolation error estimate

3.1. Equidistribution and alignment

Let X be a polyhedral domain in Rd and let T h be a simplicial triangulation on X. For every element K 2 T h, there exists an
affine invertible mapping FK : bK # K such that K ¼ FKðbK Þ, where bK is the reference element. We assume that bK has been cho-
sen to be equilateral and have a unitary volume. We denote the Jacobian matrix of FK by F 0K and the number of elements in T h

by N.
As mentioned before, we consider an adaptive anisotropic mesh as a uniform mesh in the metric specified by a metric

tensor M. Such a mesh is referred hereafter to as an M-uniform mesh. It can be characterized by shape-orientation and size
requirements on mesh elements; see [28].

Alignment condition (i.e., shape-orientation requirement). The elements of an M-uniform mesh T h are equilateral in
the metric specified by M. This can be expressed as
1
d

tr F 0K
� �T MK F 0K
� �

¼ det F 0K
� �T MK F 0K
� �1

d 8K 2 T h; ð11Þ
where MK is the average of M on element K, i.e.,
MK ¼
1
jKj

Z
K

MðxÞdx:
The left-hand side term of equality (11) is equal to the arithmetic-mean of the eigenvalues of matrix F 0K
� �T MK F 0K while the

right-hand side term is equal to their geometric-mean. The arithmetic-mean geometric-mean inequality implies that (11)
holds if and only if the eigenvalues of matrix F 0K

� �T MK F 0K are all equal. Element K is equilateral in the metric MK when it sat-
isfies (11).

Equidistribution condition (i.e., size requirement). The elements of an M-uniform mesh have an equal volume in the
metric M, i.e.,
jKj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMKÞ

q
¼ rh

N
8K 2 T h; ð12Þ
where
rh ¼
X
K2T h

jKj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMKÞ

q
:

Note that the left-hand side of (12) is equal to the volume of element K in metric MK , i.e.,
Z
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMKÞ

q
dx ¼ jKj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMKÞ

q
:

3.2. Anisotropic interpolation error bound for piecewise quadratic functions

Elementwise anisotropic interpolation error estimates are developed in [3,8,5]. Here, we follow the theory in [5]. Consider
the piecewise linear Lagrange interpolation ðk ¼ 1Þ of a piecewise quadratic function v on an arbitrary mesh T h. The ele-
mentwise interpolation error measured in the Lq norm ðq P 1Þ is given by
kv � Ihvkq
LqðKÞ 6 CjKj tr F 0K

� �T jHK jF 0K
� �� �q

;

where HK is the Hessian of v on the element K, jHK j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
HT

K HK

q
; C is a constant independent of T h and v, and trð�Þ denotes the

trace of a matrix. Note that HK is constant on K since by assumption v is quadratic on the element. Summing over all ele-
ments of T h provides an upper bound for the global interpolation error
kv � Ihvkq
LqðXÞ 6 C

X
K2T h

jKj tr F 0K
� �T jHK jF 0K
� �� �q

: ð13Þ
One may notice that we have used Lq norm for the error. As we shall see later (cf. (20)), an optimal global error bound in this
norm can be obtained for the non-regularized case. In principle, the same procedure also works for other norms or semi-
norms particularly the H1 semi-norm. However, it is unclear that the interpolation error bounds obtained in [5] for other
norms will lead to an optimal global bound for M-uniform meshes.

From this, we can set EðT h;vÞ in (5) to
EðT h;vÞ ¼
X
K2T h

jKj tr F 0K
� �T jHK jF 0K
� �� �q

: ð14Þ
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It has a lower bound as
EðT h;vÞ ¼
X
K2T h

jKj tr F 0K
� �T jHK jF 0K
� �� �q

P dq
X
K2T h

jKj det F 0K
� �T jHK jF 0K
� �� �q

d ð15Þ

¼ dq
X
K2T h

jKj
dþ2q

d detðjHK jÞ
q
d

¼ dq
X
K2T h

jKjdetðjHK jÞ
q

dþ2q

� �dþ2q
d

P dqN�
2q
d

X
K2T h

jKjdetðjHK jÞ
q

dþ2q

 !dþ2q
d

; ð16Þ
where we have used the arithmetic-mean geometric-mean inequality in (15) (recalling the trace and determinant of a matrix
are equal to the sum and product of its eigenvalues, respectively) and Hölder’s inequality in (16). If maxK2T h

diamðKÞ ! 0,
where diamðKÞ denotes the diameter of K, we see that the asymptotic lower bound on EðT h;vÞ is
dqN�
2q
d

Z
X

detðjHjÞ
q

dþ2q dx
� 	dþ2q

d

; ð17Þ
which is invariant for all meshes of the same number of elements N. Thus, a mesh on which EðT h;vÞ attains a lower bound
(16) can be considered to be an asymptotically optimal mesh.

3.3. Optimal metric

The optimal metric M is defined such that the interpolation error bound EðT h;vÞ defined in (14) attains its lower bound
(16) on M-uniform meshes of N elements associated with M.

We first notice that equality in (15) holds if the M-uniform mesh satisfies
1
d

tr F 0K
� �T jHK jF 0K
� �

¼ det F 0K
� �T jHK jF 0K
� �1

d 8K 2 T h:
Comparing this with the alignment condition (11), a property satisfied by the M-uniform mesh, suggests that M be defined as
MK ¼ hK jHK j
with some scalar function hK .
Next we notice that equality in (16) holds if the mesh satisfies
jKjdetðjHK jÞ
q

dþ2q ¼ 1
N

X
K2T h

jKjdetðjHK jÞ
q

dþ2q 8K 2 T h:
Comparing this to the equidistribution condition (12), another property satisfied by the M-uniform mesh, yields
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMKÞ

q
¼ detðjHK jÞ

q
dþ2q:
This condition can be used for determining hK . Thus, we obtain the optimal metric tensor as
MK ¼ detðjHK jÞ�
1

dþ2qjHK j 8K 2 T h: ð18Þ
The interpolation error bound (14) attains its lower bound (16) on any M-uniform mesh associated with this metric tensor.
From (13) we obtain
kv � IhvkLqðXÞ 6 CN�
2
d
X
K2T h

jKjdetðjHK jÞ
q

dþ2q

 !dþ2q
dq

ð19Þ

� CN�
2
d

Z
X

detðjHjÞ
q

dþ2q dx
� 	dþ2q

dq

¼ CN�
2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðjHjÞd

q



 




L

dq
dþ2qðXÞ

ð20Þ
for any M-uniform mesh associated with the metric tensor (18). Bound (20) has been obtained in [5] for q ¼ 2 and obtained
and shown to be optimal in [29] for general q P 1.
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The metric tensor defined by (18) is not necessarily positive definite since both jHK j and detðjHK jÞ can vanish locally. To
avoid this difficulty, the error bound is regularized with a positive parameter ah, i.e.,
kv � Ihvkq
LqðXÞ 6 C

X
K2T h

jKj 1
d

tr F 0K
� �T ½ahI þ jHK j�F 0K
� �� 	q

¼ Caq
h

X
K2T h

jKj 1
d

tr F 0K
� �T I þ 1

ah
jHK j

� �
F 0K

� 	� 	q

: ð21Þ
Using the same procedure as above, by minimizing the above (regularized) error bound we obtain the optimal metric tensor
as
MK ¼ det I þ 1
ah
jHK j

� 	� 1
dþ2q

I þ 1
ah
jHK j

� 	
8K 2 T h: ð22Þ
The regularization parameter plays a role of controlling the intensity of mesh adaptation. Indeed, as ah !1; MK ! I and a
uniform mesh results. On the other hand, as ah ! 0, the mesh adaptation is increasingly reliant on jHK j. To balance between
these situations, we follow [5] and define ah through the algebraic equation
X

K2T h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMKÞ

q
jKj ¼ 2maxf1; dq

dþ2qgjXj
or equivalently
X
K2T h

det I þ 1
ah
jHK j

� 	 q
dþ2q

jKj ¼ 2maxf1; dq
dþ2qgjXj; ð23Þ
where the factor 2maxf1; dq
dþ2qg has been used so that lower and upper bounds can be obtained for ah; see (24) and its derivation

below. With this definition, about half of the mesh elements are concentrated in regions where detðMKÞ is large [5]. More-
over, MK is invariant under a scaling transformation of v.

Eq. (23) has a unique solution since its left-hand side is monotonically decreasing with ah increasing (assuming that jHK j
is not all zero for all elements of T h), and tends to þ1 (which is greater than the right-hand side) as ah ! 0 and jXj (which is
less than the right-hand side) as ah !1. Moreover, it can be solved using a simple iteration scheme such as the bisection
method. Furthermore, lower and upper bounds on ah can be obtained,
2maxf2; dq
dþ2qþ1g� q

dþ2q � 1
� ��1

jXj�1
X
K2T h

detðjHK jÞ
q

dþ2qjKj
" #dþ2q

dq

6 ah 6
1
jXj

X
K2T h

kHKk
dq

dþ2qjKj
" #dþ2q

dq

: ð24Þ
Indeed, from (23) we have
2maxf1; dq
dþ2qgjXj ¼

X
K2T h

det I þ 1
ah
jHK j

� 	 q
dþ2q

jKj 6
X
K2T h

I þ 1
ah
jHK j





 



 dq
dþ2q

jKj 6
X
K2T h

1þ a�1
h kHKk

� � dq
dþ2qjKj

6 2maxf0; dq
dþ2q�1g X

K2T h

1þ a
� dq

dþ2q

h kHKk
dq

dþ2q

� 	
jKj ¼ 2maxf0; dq

dþ2q�1g jXj þ a
� dq

dþ2q

h

X
K2T h

kHKk
dq

dþ2qjKj
 !

;

which leads to the right inequality of (24). On the other hand,
2maxf1; dq
dþ2qgjXjP

X
K2T h

1þ a�d
h detðjHK jÞ

� � q
dþ2qjKjP 2

q
dþ2q�1

X
K2T h

1þ a
� dq

dþ2q

h detðjHK jÞ
q

dþ2q

� 	
jKj

¼ 2
q

dþ2q�1 jXj þ a
� dq

dþ2q

h

X
K2T h

detðjHK jÞ
q

dþ2qjKj
 !

;

which gives the left inequality of (24).
The interpolation error bound for a corresponding M-uniform mesh can be obtained as follows. From (21) and using the

equidistribution and alignment conditions we have
kv � Ihvkq
LqðXÞ 6 Caq

h

X
K2T h

jKjdet I þ 1
ah
jHK j

� 	 q
dþ2q 1

d
tr F 0K
� �T MK F 0K
� �� 	q

¼ Caq
h

X
K2T h

jKjdetðMKÞ
1
2 det F 0K

� �T MK F 0K
� �q

d

¼ Caq
h

X
K2T h

jKjdetðMKÞ
1
2 jKjdetðMKÞ

1
2

� �2q
d ¼ Caq

hN�
2q
d r

dþ2q
d

h :
For ah defined in (23), rh ¼ 2maxf1; dq
dþ2qgjXj. Combining this with (21) we obtain
kv � IhvkLqðXÞ 6 CN�
2
dah: ð25Þ
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In our computation we use the mesh generation software bamg (bidimensional anisotropic mesh generator developed by Hecht
[30]) to generate new adaptive meshes for a given metric tensor M. Note that bamg requires that the metric tensor be further
normalized such that all elements have a unitary volume in the metric. Thus, in actual computation we use a normalized
metric tensor
MK ¼
rh

N

� ��2
d

det I þ 1
ah
jHK j

� 	� 1
dþ2q

I þ 1
ah
jHK j

� 	
; ð26Þ
where N is the desired number of mesh elements and
rh ¼
X
K2T h

jKjdetðMKÞ
1
2 ¼

X
K2T h

jKjdet I þ 1
ah
jHK j

� 	 q
dþ2q

:

It is remarked that the metric tensor can also be normalized using a prescribed error level; see [25].

4. Computation of the metric tensor and anisotropic meshes

We discuss here some implementation issues for two-dimensional problems.
The computation typically starts with a coarse regular Delaunay mesh of the domain and a desired number of mesh ele-

ments, N. For a given triangular mesh T ðiÞh at step i, we compute the numerical approximation uðiÞh with a standard linear finite
element method. Based on uðiÞh and T ðiÞh , we then compute zðiÞh as an approximation to the solution of the approximate error
problem ðEhÞ. Once zðiÞh has been obtained, it is straightforward to compute its elementwise Hessian and define the new met-
ric tensor MðiÞ according to (22),
MðiÞ
K ¼ det I þ 1

aðiÞh

HK zðiÞh

� �


 


 !�1
6

I þ 1

aðiÞh

HK zðiÞh

� �


 


 !
;

where the error is measured in the L2-norm, i.e., q ¼ 2. A new mesh is generated with bamg according to the metric tensor
MðiÞ ¼ rðiÞh =N

� ��1
MðiÞ. The process is repeated until a good adaptation (see discussion below) is achieved.

4.1. Mesh quality measure

In order to characterize the mesh adaptation quality and to define an appropriate stopping criterion for the mesh adap-
tation process, we introduce the alignment and equidistribution quality measures [4]
Q ðiÞaliðKÞ ¼
tr F 0K
� �T MðiÞ

K F 0K
� �

d det F 0K
� �T MðiÞ

K F 0K
� �1

d

2664
3775

d
2ðd�1Þ
and
Q ðiÞeqðKÞ ¼
NðiÞjKj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det MðiÞ

K

� �r
rðiÞh

;

which characterize how closely the mesh satisfies the alignment and equidistribution conditions (11) and (12), respectively.
Using MðiÞ, Q ðiÞali, and Q ðiÞeq , the estimate (21) can be reformulated as
kv � IhvkLqðXÞ 6 CaðiÞh

X
K2T h

jKj 1
d
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� �T I þ 1

ah
jHK j

� �
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 !1
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¼ CN�
2
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where
Q ðiÞmesh 	
1
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X
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d

" #1
q

is the overall mesh quality measure and takes into account both the shape and the size of elements. Since Qali and Q eq appear
in Qmesh as a product, their effects are not independent but compensate for each other. As a consequence, the mesh can have a
good overall quality when small elements are shaped worse than large elements or well-aligned elements are worse shaped
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than worse aligned elements. Note that Q ali; Qeq; Q mesh P 1; and Qali ¼ Qeq ¼ Qmesh ¼ 1 if and only if the underlying mesh is
M-uniform (cf. (25)).

In the following numerical tests, the mesh adaptation process is stopped when
Q ðiÞmesh 6 1þ �mesh;
where �mesh is a tolerances chosen as �mesh ¼ 0:1 in our computation.

4.2. Computation of the error estimator

A key component of the procedure is to find the solution zh of problem ðEhÞ. Note that ðEhÞ is a global problem and finding
its exact solution can be as costly as for computing a quadratic finite element approximation to the original PDE problem.
Three approaches are considered here for solving or approximating ðEhÞ.

Edge-based error estimator. The expense of the error estimation can be significantly reduced, if the bilinear form a in
ðEhÞ is replaced by an approximation ~a that allows a more efficient solution of the resulting linear system. A very efficient
approach in two dimensions is to reduce the original problem to a series of local error problems which are defined over
two elements sharing a common edge and can be solved efficiently. The approach is equivalent to the application of one Ja-
cobi’s iteration (starting from zero) to the linear system resulting from the global error problem, i.e., to the replacement of
the stiffness matrix resulting from ðEhÞ by its diagonal. This approach has been successfully used in finite element compu-
tations [27,31,20]. Moreover, it has been shown [27] that such an error estimator is spectrally nearly equivalent to the ori-
ginal one under suitable conditions.

Despite its success in isotropic mesh adaptation, the approach does not seem to work well for anisotropic mesh adapta-
tion. This may be explained by the fact that estimators based on local error problems generally depend on the aspect ratio of
elements and can become inaccurate when the aspect ratio is large, a case that is often true for anisotropic meshes. More-
over, such estimators may not contain enough directional information of the solution which is global in nature and essential
to the success of anisotropic mesh adaptation.

Node-based error estimator. This approach is similar to the edge-based error estimator, with the error estimator being
obtained by solving a series of local error problems defined on node patches with homogeneous Dirichlet boundary
conditions.

Inexact solution of the full error problem. In this approach the full error problem is kept but only an approximation to
its exact solution is sought and used for the computation of the metric tensor. In our experiments, a few symmetric Gauß–
Seidel iterations are employed to obtain such an approximation. In the following computation, Gauß–Seidel iterations are
repeated until the relative difference of the old and the new approximations is under a given tolerance GS-RTOL.

It is noted that globally defined error estimators have the advantages that they are often independent of element aspect
ratio and contain more directional information of the solution. Moreover, it is known [24] that the full hierarchical basis er-
ror estimator is efficient and reliable for anisotropic meshes.

Numerical comparison among these approaches is given in the next section.
5. Numerical examples

In this section, we present some numerical results for a selection of two-dimensional problems with an anisotropic
behaviour. We first compare different approaches in solving the error problem ðEhÞ and then the new method with some
common Hessian recovery methods. At the end of the section, we give further examples to demonstrate the ability of the
method to generate appropriate anisotropic meshes.

Convergence is illustrated by plotting the finite element solution error against the number of elements. We use the
L2-norm for the error because the monitor function MK is optimized for this norm. For the inexact solution of the full error
problem, GS-RTOL = 0.01 is chosen as a relative tolerance for the iterative Gauß–Seidel approximation.
5.1. A first example

Consider the boundary value problem
�Du ¼ f in X;

u ¼ g on @X

�
ð27Þ
with X ¼ ð0;1Þ � ð0;1Þ. The right-hand side f and the Dirichlet boundary conditions are chosen such that the exact solution is
given by
uðx; yÞ ¼ tanhð60xÞ � tanhð60ðx� yÞ � 30Þ:
The solution exhibits a strong anisotropic behaviour and describes the interaction between a boundary layer along the x-axis
and a shock wave along the line y ¼ x� 0:5. A solution plot is given in Fig. 1(a).



Fig. 2. Example 5.1: a comparison of the error for adaptive finite element solutions obtained with mesh adaptation controlled by the reduced and full error
estimators.
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Reduced vs. full error estimators. As mentioned in Section 4, on anisotropic meshes, there can be a significant difference
in accuracy between estimators obtained by solving localized error problems and those obtained by means of a globally de-
fined error problem. In our first test, we investigate the influence of the three error estimators described in the previous sec-
tion on mesh adaptivity.

Results for the error of the adaptive solution against the number of elements are presented in Fig. 2.
As expected, the full error estimator works best, leading to a smaller error than those obtained with local error estimators.

The node-based error estimator works better than the edge-based error estimator, mainly because it involves more elements
and, in this sense, is more global.

The same observation can also be made from Fig. 3, where adaptive meshes obtained with the error estimators are shown.
For these mesh example, the desired number of mesh elements N in the normalized metric tensor given by (26) has been set
to 600. All methods produce correct mesh concentrations, although mesh alignment and orientation are different. In the
mesh controlled by the full error estimator elements near the boundary layer and the shock wave are very thin, have a large
aspect ratio2 of up to 46.9, and are properly aligned with the fronts of the shock wave and the boundary layer (Fig. 3(c)). On the
other hand, the elements of meshes controlled by reduced error estimators have rather moderate aspect ratios of 12.8 and 14.3
and are less anisotropic (Fig. 3(a) and (b)).

The accuracy of the corresponding finite element solutions is different, too. The mesh controlled by the full error estima-
tor leads to a solution error kekL2 ¼ 1:6� 10�3, less then one half of kekL2 ¼ 3:7� 10�3, the error obtained using the node-
based error estimator, and about one third of kekL2 ¼ 5:0� 10�3, the error achieved with the edge-based error estimator.

These results are in good agreement with the comments made in Section 4 that the full error estimator will do a better job
than reduced ones for anisotropic mesh adaptation. Reduced error estimators are able to capture the distribution of the mag-
nitude of the true error and yield a good mesh concentration. However, they fail to produce proper mesh alignment, i.e., they
does not contain enough information for proper shape and orientation adaptation.

Effects of the number of Gauß–Seidel iterations. We now investigate how many iterations are sufficient for obtaining a
valuable approximation to the error equation. Fig. 4(a) presents results for different iteration numbers to compute the full
error estimator. As one can see, a few iterations are sufficient for obtaining an approximation good enough for mesh adap-
tation. The convergence lines are very close to each other. The exact solution of the error problem leads to a smaller error, but
the difference is hardly visible. Three steps of the symmetric Gauß–Seidel method produce an almost optimal mesh for this
example.

Comparison to Hessian recovery methods. Two Hessian recovery methods are considered for comparison purpose.
Quadratic least squares fitting. This method was recently developed by Zhang and Naga [13] and proved to be robust and

reliable. It computes a local quadratic fitting to function values or their approximations at some neighboring points and ob-
tains a Hessian approximation by differentiating the polynomial twice.

Variational formulation. This approach recovers the Hessian, which does not exists in the classical sense for piecewise lin-
ear functions, by means of a variational formulation [12]. Precisely, let /i 2 Vh be the piecewise linear basis function at node
ðxi; yiÞ. Then the nodal approximation to the second-order derivative uxx of a function u at ðxi; yiÞ is defined as
2 Asp
D2
xxuh

� �



ðxi ;yiÞ

Z
X

/i dxdy 

Z

X
D2

xxuh/i dxdy ¼ �
Z

X

@uh

@x
@/i

@x
dxdy:
The same approach is used to approximate uxy and uyy.
Fig. 4(b) shows the error against the number of elements for each method. For comparison purpose, results obtained using

the analytical Hessian are also included. All methods provide almost the same results. Particularly, the method based on the
global estimator with three Gauß–Seidel iterations is comparable to the recovery-based methods.
ect ratio is longest edge divided by shortest altitude. An equilateral triangle has an aspect ratio of
ffiffiffi
3
p

=2 
 0:9.





Fig. 4. Example 5.1: (a) effects of the number of Gauß–Seidel iterations and (b) comparison of global error estimation and Hessian recovery.
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It is worth noting that although the quadratic least squares fitting is generally more accurate and robust than the vari-
ational method, both produce basically the same adaptive mesh. This seems to confirm the conjecture that highly accurate
Hessian recovery is not necessary for good mesh adaptation.

5.2. Further examples

We consider two boundary value problems in the form (27) with now the right-hand side f and the Dirichlet boundary
condition being chosen such that the exact solution is given by the following functions:
u1ðx; yÞ ¼
1

1þ e
xþy�1:25

0:05

;

u2ðx; yÞ ¼ e�25x þ e�25y:
The first function represents a shock wave along the line y ¼ 1:25� x while the second models a boundary layer near the
coordinate axes.

We compare the error for finite element solutions obtained with the global error estimator and the quadratic least
squares Hessian recovery. Results for the quasi-uniform (regular Delaunay) mesh and the edge-based error estimator are
also given. Figs. 5 and 6 show the results.

As in Section 5.1, we can see that mesh adaptation significantly reduces the finite element error compared to a quasi-uni-
form mesh having the same number of elements. The mesh based on the edge-based error estimator provides a good mesh
concentration and is clearly better than a quasi-uniform one, but it is almost isotropic and inferior to a mesh obtained with
the use of the full error estimator. Again, one can observe that the elements of the meshes obtained by means of the full error
estimator and the quadratic least squares fitting are properly aligned with the shock wave and the boundary layers. Thus, the
new method produces results comparable to those obtained with recovery-based methods.

5.3. Discontinuous gradients

Next, we consider problems whose solution has a discontinuous gradient along a certain interface in the domain. This
situation arises in elliptic problems with discontinuous coefficients in the diffusion term such as heat conduction problems
with jumps in material coefficients. Difficulties when using gradient recove